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The elastic stiffness constants and their 
hydrostatic pressure derivatives for TGS 

A. DUNK, G. A. SAUNDERS 
School of Physics, University of Bath, Claverton Down, Bath, UK 

The thirteen adiabatic elastic stiffness moduli of triglycine sulphate (TGS) have been 
determined at room temperature from measurements of the ultrasound wave velocities. 
Results are used to describe the elastic behaviour of TGS. Accidental pure mode 
directions have been found at 9.4 ~ and 106.5 ~ A method has been developed for 
obtaining the hydrostatic pressure derivatives (aClj/~P) of the elastic constants of a 
monoclinic crystal from the hydrostatic pressure dependences of ultrasound wave 
velocities. This method has been applied to find the ~CIj/~P for TGS. There is no 
evidence for acoustic phonon mode softening under pressure. 

1. Introduction 
The second-order elastic stiffness constants of a 
crystal determine the slopes of the acoustic 
phonon dispersion curves in the long wavelength 
limit; their hydrostatic pressure dependences pro- 
vide information on the shift of the mode energies 
with compression. Experimentally the elastic con- 
stants can be obtained using standard pulsed ultra- 
sonic techniques, while their pressure derivatives 
can be found from the pressure-induced changes in 
the ultrasonic wave velocities. For a monoclinic 
crystal, which is characterized by 13 independent 
elastic constants, extraction of the elastic constants 
and their pressure derivatives from ultrasonic data 
is fairly complex. However, procedures which can 
be used to obtain the elastic constants have been 
provided by several workers [ I -3 ] .  A method for 
finding their pressure derivatives is given here and 
is used to find them for triglycine sulphate (TGS) 
(NH2CH2COOH)3H2SO4. At room temperature 
TGS is a ferroelectric crystal belonging to the 
monoclinic system and space group P21. The polar 
axis is the two-fold b-axis. At 49~ TGS under- 
goes a second-order phase transition into a para- 
electric, non-piezoelectric phase. The elastic con- 
stants have been measured in both the ferroelectric 
[4-6]  and paraelectric [7] phases. There are piezo- 
electric contributions to the elastic stiffness in the 
ferroelectric phase. These have been considered in 
part in a Brillouin scattering determination of the 

elastic constants [5] but not in the ultrasonic 
measurements of Konstantinova et al. [4]. 
Haussfiht and Albers [7] have found that calcula- 
tions of the piezoelectric corrections are unsatis- 
factory and suggest a requirement for high 
precision determinations of the piezoelectric and 
dielectric constants for TGS under accurately 
defined dielectric conditions. In view of this, they 
have restricted their work to a determination of 
the elastic constants in the paraelectric phase. The 
Briltouin scattering measurements of Luspin and 
Hauret [5], which include measurements of C~1, 
C D and C~ in both phases suggest that the piezo- 
electric contributions in ferroelectric TGS are not 
large. Hence in this first measurement of the 
pressure derivatives of the elastic constants they 
have not been taken into account. 

2. Determination of the elastic constants of 
TGS 

The single crystals studied were of the highest 
optical quality grown for use by Dr G. R. Jones as 
the sensing element in the pyroelectric vidicon 
tube. A right-handed orthogonat axial set (Ox, Oy, 
0z) has been chosen with 0y parallel to the two- 
fold b-axis. The TGS crystals were orientated by 
first identifying the two-fold axis using the X-ray 
back-reflection Laue technique, then finding the 
a- and c-axes by reference to the crystal morph- 
ology [4]. Four cubes were cut with a diamond 
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wheel, one with faces perpendicular to the [001], 
[010] and [100] directions and the other three 
such that they had a pair of faces perpendicular to 
the [101], [011] and [110] directions, respec- 
tively. Faces were polished flat and parallel on a 
cast-iron plate first with aloxite and water for a 
few seconds and finished with 14pm diamond 
paste. Ultrasonic waves (carrier frequency 10 MHz) 
were inserted and detected by quartz transducers 
bonded with Dow Resin 279-V9 and their velo- 
cities measured using the pulse echo overlap tech- 
nique. A correction has been applied to the ultra- 
sonic velocity, to account for the transducer effect 
which, depending upon the acoustic impedance 
mismatch between TGS and quartz, acts to alter 
the effective path length [8]. Velocities were meas- 
ured for the ultrasonic modes listed in Table I, suf- 
ficient to enable determination of a complete set 
of elastic constants [ 1 ]. 

For a monoclinic crystal the 13 independent 
second-order elastic stiffness constants represented 
in Voigt notation (i] -+ m = i, if i = ] and i] ~ n = 
9 -- i if i v~]) and matrix form are: 

[Cll 

C12 

C13 
= 

0 

Cls 

0 

C12 C13 0 C15 0 

C= CEa 0 Czs 0 

Q3 C33 0 C3s 0 

0 0 C44 0 C46 

C2s C3s 0 Css 0 
| 

0 0 C46 0 C66 ] 
1 

(1) 

To obtain these elastic constants and their hydro- 
static pressure derivatives as best fits to experimen- 
tal ultrasonic velocity measurements necessitates 
an extensive computational procedure based on 
solution of the Christoffel equation 

[k2F~i--pv25u]uj  = 0 (2) 

where k is 21r/k and uj are components of the par- 
ticle displacement vector. The elements of the 
Christoffel matrix are: 

r u  = C,d~ + C66l~ + Cssl: + 2Clslzlx 

C~2 = (C46 + C2s)lyl, + (C~2 + C66)l,,l~, 

r13 = C,sl2x "4- C46l 2 4- C3512z 4- (C,3 4- Cs5)lzl x 

P22 = C6612x -I- C2212y + C4412z + 2C46lzl x (3) 

P23 = (C44 + C2s)lflz + (C2s + C46)1~l~, 

Paa = CssZ2x + C44l~ + C33l: + 2Caslflx. 
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Here I x, l v, l~ refer to the direction of wave propa- 
gation. The condition for non-zero solutions of the 
Christoffel equation is 

[ v2 t det F u - - p ~ 6  i = 0 (4) 

which gives the mode velocity; the particle dis- 
placement vectors can be obtained by substituting 
the velocity into Equation 2. The relationships [3] 
between the elastic constants and mode velocity 
for selected modes are given in Table I. From 
measurements of the ultrasonic velocities in the six 
directions [001], [0101, [100],  [1011, [1 101 
and [01 1 ] it is possible to obtain the complete set 
of 13 elastic constants [1]. The appropriate solu- 
tions to the Christoffel equations are given in 
Tables 1 and II. Cross checks on the accuracy of 
the velocity measurements can be made using trace 
identities [2], which can be obtained by manipula- 
tion of the relationships in Tables l and II, 

pvl + = + (5) 

1.649 x 101~ -2 1.648 x 10a~ -2 

+ �89 + + + pv ) = 

= p(v23 + v214 + v~s) (6) 

5.542 x 10a~ 72 

= p(v 6 + 

4.923 x 101~ -2 

5.527 x 10t~ -2 

+ pv.  + pvb = 

+ v1 8) 

4.867 • 101~ -2 

(7) 

and iI: 

Clt + Css = pv~ + pv~ = A (9) 

C n C s s - C ~ s  = pv~pv~ = B (10) 

Css + C33 = pv~ + pv~ = D (11) 

CssC33--C2s = pv~pv~ = F (12) 

pV~pv~ 2 1 2 -- [pvn ---~(pv2 + pv~)] 2 = pv~pv~ (8) 

0.629 X 102~ 2 0.643 x 102~ 2. 

The extent to which these checks are verified 
attests to the internal consistency of the data. 

Determination of the elastic constants from the 
velocity data begins with C22, C44 and C66 which 
can be obtained directly from Vs, v8 and v2, respec- 
tively (Table I). Then C46 can be found using Fly 
Five more elastic constants are available from the 
relationships which follow from those in Tables I 
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TABLE II Additional relationships used to obtain the elastic stiffness constants 

[1 1 0] direction 

[011] direction 

pv~ + pv~ = C .  + C5~ 
IO~I2IOV~ = C l l  C,$  - -  C12$ 

pvl + ov ~, = c . ,  + coo 
pv~pv~ = c o , c .  - c L  
pv~ + av~ = C,~ + c33 

1 pV~o + Ov~ = r[C,~ + C33 + 2(C~5 + C35 + Css)] 
2 2 1 

pVlopVl2 = T [ ( C l l  "b Css "}" 2Cls)(C~5 + C33 + 2C3s) 
- ( Q ~  + C~ + C~3 + Css) 2] 

4p2(v~av~4 + v~3v~s + v~4v~ ~) = (C66 + C22)(Cs5 + C44) 
+ ( c .  + c~,)(c, ,  + c ~  + c~, + c J  - (Q~ + c ~ p ~ - ( c . ~  + c ,  o 7 - ( c ~  + c,~) ~ 

+ 2(C15 dr C46)(C~$ "~ C46)(C12 'Jv C66 ) - - ( C I I  '~ C66) (C2, ~ -~" C46) 2 
- (c~, + c . ) ( c , ~  + c~p ~ -  (c , ,  + co07(c~,  + c~91 
p(V~ 3 -4- 7.)124 -~ ~)~$) = C 6 6 -  ~. ~-(Cl,  -~C22 -~v C s ,  .-}- C44 ) 

2 2 2 2 2 2 4p (vl6v~7 + v16v18 + vl~v~ ) = (C22 + 2C~4 + C33)(C6e + Css ) 
+ (Q,  + c , , ) ( c , ,  + Q ~ ) -  (c,~ + c ~ p ' - ( c . o  + Q , ) ~ - ( c . ,  + c~p ~ 
o3v~v~v,~ ~ * = ~[(C~ + C~)(C~ + C J ( C , ,  § C~) 
+ 2(c, ,  + c~p(c~, + Qp(c~,  + c ~ p - ( c ~  + c~p(c , ,  + c3~) ~ 
- -  (C46 "~ C25)2(C,4  --~ C33 ) - -  (C2~ -~ C , 4 ) ( G ~  i .~- C35) 2 ] 

2 2 1 o(v~ + v,~ + v,~) = C~, + ~(C~6 + Cs~+,, C~, +, C~) 

C 1 5  --1- C 3 5  = 

= p(V~o + V ~ 2 - 1  2 ~(vl + v~ + v~ + v~)) = E. 

(13) 

Dete rmina t ion  of  the complete  set of  elastic con- 

stants requires considerable algebraic and 

numerical  manipu la t ion  of  the expressions in 
Tables I and II together with recourse to physical 

principles involved in the propagat ion of  ultra- 

sonic waves in crystals. This detail need not  be 

reported here. The resulting adiabatic elastic stiff- 

ness constants  o f  TGS are compared with those 

ob ta ined  by other workers in Table III and the 

compliances in Table IV. In view of  the accumula- 

t ion  of  errors involved in the extract ion of  the 

elastic constants ,  especially in C2s, C23 and C12, the 
agreement between the sets of  data is more than 

reasonable. 
Using the elastic stiffness cons tant  set obta ined  

in this work (Table II), the three wave velocities 

have been calculated for propagat ion directions at 

1 ~ intervals a round the y z ,  x z  and x y  planes by 

computa t ion  of  the eigenvalues of  the Christoffet 

equat ions  [2]. The resultant  cross-sections of  the 
three elastic wave velocity surfaces, presented in 
Fig. 1, follow the crystal Laue symmetry .  

In general, in a crystal three distinct,  mutua l ly  
or thdgonal  elastic plane waves propagate along a 
given direction,  these modes being neither longi- 
tudinal  nor  transverse. However, along certain 
special directions,  the pure mode directions (or 

acoustic axes), a pure longi tudinal  and two pure 

transverse waves do propagate. Knowledge of  these 
directions can be useful because it is usually easier 

to excite such modes with X- or Y-cut transducers 

and also there is no deviation of  the energy flux 

from the propagat ion d i r e c t i o n -  minimizing the 

possibility of  sidewall reflections. The condi t ions  
for a pure mode direct ion [9] are 

e d k C j t r ~ k N l N r N  s = 0. (14) 

T A B L E I I I The elastic stiffness constant s of TGS in the orthogonal axial set of [4 ]. The designations D (constant dis- 
placement) and E (constant electric field) are those given and discussed by Luspin and Hauret [5]. The units are 
101ONm -2 

C E C D C E C D C E C D C D C~ C D C~ C D C~ C D Ref. 

4.55 3.21 2.63 0.95 1 . 1 1  0.62 1.72 1.98 2.08 -0 .30 -0.036 0.50 -0.026 [4] 
4.71 3.35 2.75 1.02 1.03 0.61 1.50 2.10 1.85 -0.18 -0.20 0.05 -0 .02 [5] 
4.41 3.34 2.73 1.04 1.08 0.61 1.89 1.67 1.97 -0.21 -0.19 -0 .18 0.05 This work 
4.61 - 2.79 - 1.12 - - 2.10 - -0 .22 - 0.15 - [6] 
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Figure 1 yz ,  xz  and xy  plane cross- 
sections of elastic wave velocity surfaces 
of  TGS at 293K.  Units are 1 0 3 m s  -1, 
the scales being the  same for the  abscis- 
sae and ordinates of  each diagram. The 
outside curve in each case corresponds to 
the  quasi-longitudinal modes ,  which have 
the highest  velocity. The lines OA and 
OB in the xz plane denote  the accidental 
pure mode  direction at 9.4 ~ and 106.5 ~ , 
respectively, f rom the +z-axis  towards 
the + x-axis. 
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TABLE IV The elastic compliances of TGS. Units are 10-nm2N 

S~ $2~ $3~ $4~ Sss $66 S~2 S~3 $23 S~5 S~ S~5 $46 Ref. 

3.29 6.98 10.85 10.53 t0.73 16.15 -0.29 -2.27 -5.77 -0.14 -2.45 4.08 0.44 [4] 
3.27 4.87 7.74 9.81 10.I1 16.40 -0.06 -2.47 -3.25 0.68 1.09 -1.44 0.32 [5] 
3.19 5.62 6.79 9.65 9.39 16.45 -1.13 -1.12 --3.35 0.23 0.21 0.32 -0.79 This work 

For a monoclinic crystal solution in the xz plane 
can can be shown to be 

N,N3[NZA, -- N~CI] + N~(3N 2 -  N~)Cxs 

2 2 2 -ev3(3 v -x3)c35 = 0, (15)  

or writing the direction cosine ratio N,/N3 as u 

- -  bl4C15 -}- A 1b/3 -}- 3u 2(Cls -- C3s) -- u 1 C1 

+ C3s = 0. (16) 

Here A I = C l l -  2 C s 5 -  Cla and Cl = Q 3 -  2Css-- 
C~3. Substituting the elastic constant values 
obtained from this work (Table I) into this equa- 
tion, shows that there is a pure mode axis for TGS 
in the xz plane at 9.4 ~ from the + z  axis towards 
the + x  axis; this position is shown in Fig. 1. A 
second pure mode axis occurs at 106.5 ~ . 

Knowledge of the elastic stiffness tensor com- 
ponents enables determination of  a material's res- 
ponse to any applied stress within the Hooke's law 
regime. Young's modulus E, the measure of  the 
ratio of  an applied longitudinal stress to the result- 
ing longitudinal strain, for a monoclinic crystal 
[10 t is 

E = {/4811 ~- 2l~112S12 + 2l?123S13 -b 21311331s 

9 2 + l s22 + 2ql s , + & lj,S   + 

+ 2lll~$3s + 2 : 1213 $44 + 2ll l~13 $46 + l Zll~Sss 

@ 1212S66. }-1 (l  7) 

for a stress in the direction labelled by the direc- 
tion cosines l~, 12, 13. Young's modulus can be 
represented by a surface which gives a useful visual 
guide to the elastic behaviour of  a crystal. Three 
plane (yz, xz  and xy) cross-sections of  this surface 
for TGS are presented in Fig. 2. For a given stress 
applied along a crystallographic axis, the strain is 
greatest along the z-axis and least along the x-axis. 

The volume compressibility - -AlP  (where A is 
the dilation) is S i i l e l e  (or in Voigt notation Sn  + 
$22 + $33 + 2(S12 q- $23 -k $31)) equal to 4.4 x 
1 0 - n m e N  for TGS. Hence the bulk modulus, 
defined as the reciprocal of  the compressibility is 
2.27 x 1 0 n N m  -2. Another elastic property com- 
monly required is the linear compressibility, which 
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is the relative decrease in length of  a line when a 
crystal is subjected to hydrostatic pressure and is 
given by Sijlelelil j, Here ]i is a unit vector in the 
direction of  the stretch of  the line. For a mono- 
clinic crystal the linear compressibility is [ 10] 

J3 = (Sll  ~- S12 ~- S13)112-} - (S12 -~- 322 -[- $23)122 

+ ($13 + $23 + $33)/~ + (Sis + S2s + S3s)13li. 

(18) 

The marked anisotropic behaviour of  the linear 
compressibility of  TGS can be seen in the yz,  xz  
and xy  plane plots of  the property in Fig. 3. 

There is a simplifying feature of  the elastic 
behaviour of  TGS which is a helpful guide and 
may well be of  practical value. This can be seen by 
considering Matrix 1 which collates the elastic con- 
stants. Now the elastic constants Cls , C25, Gas and 
C46 are an order of  magnitude smaller than the 
others (Table III). If they were zero, the matrix 
would be that for an orthorhombic crystal. The 
wave velocity (Fig. 1), Young's modulus (Fig. 2) 
and compressibility surface (Fig. 3)cross-sections, 
especially those of  yz  and xy  planes, show clearly 
this pseudo-orthorhombic elastic behaviour of  
TGS. In the xz plane the surfaces are rotated away 
from the crystallographic x- and z-axis to the 
acoustic axes; there is some distortion because the 
two acoustic axes in the xz plane are not perpen- 
dicular to each other. 

The unit cell volume of  TGS is 0.640 nm3; there 
are two formula units, each comprising 37 atoms, 
per primitive unit cell [11]. Hence there are 3N 
(= 222) degrees of  freedom and therefore 3N 
phonon modes at the Brillouin zone centre. This 
complex vibration spectrum makes for difficulties 
in quantitative analysis of  lattice vibration proper- 
ties. Thus it is useful to have an estimate of  the 
Debye temperature, 0D, corresponding to the 
acoustic modes alone, which can be obtained from 
the measured elastic constants by integrating 

over velocity space. Here the vi (i = 1, 2, 3) are the 
three velocities obtained as the eigenvalues of  the 
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Christoffel Equations 2 for a given direction. This 
integration has been carried out over the whole of 
velocity space for all three modes (the curves in 
Fig. 1 show only the y z ,  x z  and x y  plane cross- 
sections of  these velocity surfaces). The integral 
over solid angle has been approximated by a sum 
taken at 10 288 points each subtending an equal 
solid angle A~ of 1.218 x 10 -3 steradians. The 
Debye temperature 0~ of TGS calculated from the 
room temperature elastic constants (Table III) is 
17OK. Using the room temperature, rather than 
low temperature elastic constant data, can be 
expected to produce quite a large error (of the 
order of  IOK) in 0m. Lawless [12] found that the 
low-temperature specific heats of several ferro- 
electrics, including TGS, are complex and involve, 
in addition to the Debye T a term, a T 3/2 com- 

xz PLANE 

[1001 

Figure 3 yz ,  xz  and xy  plane cross-sections of the linear 
compressibility surface of TGS. Units are l0 -~~ m 2 N -~, 
the scales being equal for the abscissae and ordinates of 
each diagram. 

ponent, which he ascribed to a contribution from 
domain walls. He obtained a value of 107K for 0m 
for TGS. Thus there is a substantial difference 
between the Debye temperatures obtained from 
the specific heat and elastic constants, perhaps not 
surprisingly in view of the complexities of the lat- 
tice dynamical behaviour and the domain wall 
effects which must be present in TGS. 

3. A procedure for determination of the 
hydrystatic pressure derivatives of the 
elastic stiffness constants for a 
monoclinic crystal 

The hydrostatic pressure dependences of these 
ultrasonic wave velocities were measured at pres- 
sures up to 2kbar ( - 2  x 10SPa) in a piston and 
cylinder apparatus [13]. Pressure was determined 
by a manganin wire resistance gauge. 

The pulse echo overlap frequency was conver- 
ted to a relative change (AW/Wo--1) in the 
natural velocity If [14]. The initial pressure 
derivative of p v  2 can be obtained using [ 15] 

(pv2)~=o = p v g ( 2 f ' / f o  + X T - -  2 N k N r n S ~ m i i ) ,  

(19) 

where • is the isothermal volume compressibility, 
T NkNmSkmii corresponds to the isothermal linear 

compressibility, fo the frequency required for 
pulse overlap at atmospheric pressure and f '  is the 
associated pressure derivative. The values of  f ' ,  
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determined as the gradient of the least square line 
of the frequency against pressure plot, normalized 
to f0 are given as .f'/fo in Table I. This equation in 
this form holds strictly only for pure mode 
directions, where the pressure dependence of the 
particle displacement vector is zero. In a mono- 
clinic crystal this is true only for a few modes. 
However, if the effect of pressure on the particle 
displacement vector is small, Equation 19 can be 
taken as a reasonable approximation. Although in 

2 p a determination of (or)e=o through Equation 2 
the isothermal elastic constants should be used, 
the difference between isothermal and adiabatic 
elastic constants is not substantial compared with 
the experimental error and the adiabatic compli- 
ances have been employed here. The pressure 

3pv~ apv~ aCss aC3a 
+ - - -  - - 4  - - -  C' (23) 

3P 3P 3P 3P 

3pv~ 3ov ~ 0 @  3C33 
+ pv~ ~ ~ C33 + c ~ - -  pvv ~ - f  or" - 3P 

3C35 = D' (24) 
- -  2C3s 3P 

3 
- ~(v,  + v~ + v~ + v b l  = ~[1( , / )20  q_ V22 1 2 

-- 3C15 4- 3C3-'~55 : E'.  (25) 
3P 3P 

These equations do not contain a squared term: 
only one solution exists for each derivative. C~s 
can be obtained from 

3Css 2E'ClsC3s + B'C3s + D'C1s -- C35CssA' -- CIsCssC' 
3P 

2 p derivatives (fir)P=o, taking into account changes 
in path length and density induced by pressure 
using Equation 2, measured for 18 modes are given 
in Table I. These results have been used to obtain a 
set of hydrostatic pressure derivatives of the elastic 
stiffness constants. While determination of the 
elastic constants themselves leads to several 
possible solution sets (the correct one has been 
deduced by arguments based on the physics of 
ultrasonic wave propagation), a single solution is 
obtained for the pressure derivatives. 

The pressure derivatives are found by differen- 
tiation and manipulation of the expressions in 
Table l and II. Those of C22, C44 and C66 have been 
obtained directly from 

3C22 a(pv 2) aC~ a(pv~) 3C66 3(pv 2) 
3P 3P ' 3P 3P ' 3P 3P 

The next pressure derivative, which is easily found, 
is that of C46 from 

3pv21 _ 1 " ~3C44 + 0C66 @ 2 3C46 t . (20) 
aP 2 ~ ae aP 3P / 

The pressure derivatives of Clb Css, Cls, C33 and 
C3s can be obtained by taking derivatives of Equa- 
t ions9 to  13: 

Opv~ 3pv 2 aC~I 3Css 
- - - 4 -  - I- - A' (21) 

3Cl t  
+ Css 

(22) 

3P 3P bP 3P 

p v ~ +  pv23~; 2 3Css = cu~-p -  

3Cts _ B' 
- -  2Cls 3P 

(26) 
(C3sCn -- C3sCss + ClsC33 -- ClsCss) 

t t t t 
Then by back substitution Cn, C33, Cts and C3s are 
determined. The starting point for C13 is the equa- 
tion for 4pv20pv22 in Table II which on differen- 
tiation by the product rule and rearranging gives: 

c',3 = {(c,s + c3s + G3 + C~)-~[(G.~ + c3~ 

+ 2C3s) ~ ( C n  + C5s + 2C15) + (Cn 

3 
q- C55 ~- 2C15) ~-~(C55 + C33 -]- 2C3s) 

2 0 2 2 0 2 3 
- -  4 ( p v 1 0 ~ V 1 2  4- PVl2 ~"~ V 10 - -  ~ ( C I s  

+ Cas + Css)]. (27) 

The best method for obtaining the pressure deriva- 
tives of the remaining three stiffness constants 
Qs, C12 and C13 is to substitute the measured 
velocities at different pressures into the equations 
in Table II for the [110] and [011] modes to 
obtain these elastic constants as a function of pres- 
sure. Then their derivatives can be obtained. Tak- 
ing derivatives directly of these equations leads to 
serious cumulative errors in C;s, Ct12 and C;3. 

This provides a general procedure for determin- 
ation of the hydrostatic pressure derivatives of the 
elastic stiffness constants for a monoclinic crystal. 
The results obtained for TGS are given in Table V. 
As a rule in a crystal, in the absence of mode 
softening, the phonon mode frequencies co 
increase under pressure, so that dco/dq (where q is 

1 3 3  
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(~@)p=o = 9.5; (Oo@)p=o = 8.9; (O~@)v=o = 6.0; 

(OO@)p=o = --0.40; (a~@)p=o = 13.4; (O~@)p=o = 6.9; 

(bO@)p=o ~ O; (O~@)p=o= 5.9; (~A},=O= 0.43; 

--~-]P=O = 0.92; \--ffff-lp=o = 0.07; \ Op ]p=o 

~176176 = 058.  
"~P-]P= O 

the phonon wave vector) also increases. Therefore, 
at the zone centre for the acoustic branches, the 
elastic wave velocities increase under pressure. For 
every acoustic mode measured for TGS the ultra- 
sonic wave velocity increased with pressure: the 
behaviour is normal. Hence the pressure deriva- 
tives of  the elastic stiffness constants are positive; 
~Czs/OP is an exception but in itself does not cor- 
respond to any normal mode - it is obtained only 
in combination with other derivatives OGj/3P. 
This normal behaviour of  the elastic modes under 
pressure has some important ramifications in 
understanding the nature of  the phase transition 
which occurs at 49 ~ C. Structural phase transitions 
are often associated with softening of  acoustic or 
optic phonon modes. For an elastic phase tran- 
sition, in which the crystal structure change takes 
place by a homogeneous lattice deformation, the 
associated soft mode is a long wavelength, zone 
centre acoustic phonon. This type of  mode soften- 
ing commonly results in an anomalous pressure- 
induced decrease of  an ultrasonic wave velocity. 
Optic phonon mode softening is another widespread 
characteristic of structural phase transitions; if the 
soft mode is at the zone centre, then interaction 
between the softening optic branch and the acous- 
tic branch can lead to acoustic mode softening, 
and again negative OCIj/OP can occur. However, 
for TGS at room temperature, which is quite close 
to Te, the hydrostatic pressure dependences of  the 
elastic constants are positive: there is no sign of  
acoustic mode softening. This conclusion is in 
agreement with measurements of  the elastic con- 
stants as a function of  temperature up to and 
through T e [5, 6]: there are no large, anomalous 
decreases in ultrasound wave velocity in TGS as it 
approaches To. 
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